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Abstract

Memory access cost is an important consideration in performing data intensive applications. The

widening gap between the performance of processor and memory magnifies the importance of data

placement during computation. In this report, we describe techniques to improve memory system

performance. These techniques involve data placement and program control tuning. The application

and algorithm designer can apply them to reduce the total memory access cost during computation.

We demonstrate an approach by considering matrix transposition, multiplication, and mesh genera-

tion of generic finite element methods. We use our Integrated Memory Hierarchy (IMH) model to

design data layouts for efficient matrix operations. Our proposed work provides a uniform method-

ology across multiple HPC platforms for the development of a suite of the kernel codes (e.g., matrix

transposition and matrix multiplication) commonly used by DoD applications.

We present an efficient algorithm for out-of-core matrix transpose for transposing large-scale

matrices. Our algorithm improves execution time by reducing both the number of I/O operations

and the index computation time. I/O operations are reduced by using efficient data layout on disk

and balancing the number of reads and writes.

For ”standard” matrix multiplication, we have developed a novel data layout that reduces cache

pollution, data cache misses and TLB (Translation Look-Aside Buffer) misses. Prior to computa-

tion, we reorganize the matrix data layout by transposing and partitioning into blocks, each equal

to the virtual page size. This proposed approach avoids cache pollution, conflict cache misses, and

TLB misses.



The third problem is implementation of appropriate mesh generation for a suite of Finite Ele-

ment Methods (FEMs). We apply an algorithmic technique of separating rows of a data matrix based

on their access patterns. Applied in conjunction with blocking, our approach minimizes memory

requirements and optimizes cache performance.

We have implemented our proposed approaches on UltraSPARC II, Alpha 21264, Cray T3E and

Pentium III based machines. Experimental results show our approaches to be effective in improving

overall performance.
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1 Introduction

HPC platforms are being employed to perform a wide variety of data-intensive applications such

as scientific computations, media processing, automatic target recognition systems among others

[5, 8, 12, 17, 18, 20, 21, 23, 24]. In such data-intensive applications, the data is stored in different

levels of a memory hierarchy with different data access costs. Although HPC platforms are already

able to provide large computational power, the memory access costs have not improved accordingly.

Thus memory access can become the bottleneck in performing such data-intensive applications on

HPC platforms.

In this report, we focus on algorithmic techniques for efficient memory access. We show the

effectiveness of our approach by showing improved performance for two kernel operations, matrix

transposition and matrix multiplication, and the mesh generation operation of generic finite element

methods on state-of-the-art machines. The efficiency of such operations depends heavily on the

data access cost. Traditionally, matrices are stored in either column or row major order (data layout)

in the memory. Mismatch between the data layout and the data access pattern can lead to severe

performance degradation due to cache misses, cache pollution, DRAM page faults, and TLB misses.

In this report, algorithmic techniques such as cache conscious data layout techniques are proposed

for performance tuning of these matrix operations. Our design of efficient data layouts for matrix

operations is based on our previously proposed Integrated Memory Hierarchy (IMH) model. The

IMH model is used to predict the performance of DoD applications. Our proposed work provides a

uniform methodology across multiple HPC platforms for performance optimization of a suite of the

kernel codes (e.g., matrix transposition and matrix multiplication) used by many DoD applications.

Efficient transposition of large-scale matrices has been widely studied. These efforts have fo-

cused on reducing the number of I/O operations. However, in the state-of-the-art architectures, data

transfer time and index computation time are also significant components of the overall time. In

this research effort, we developed an algorithm that considers all these costs and reduces the overall

execution time.

Our algorithm reduces the number of I/O operations significantly by using two techniques: (1)

writing the data onto disk in predefined patterns and (2) balancing the numbers of read and write

operations to disk. The reduction of the number of I/O operations has a significant impact on overall

time for I/O, which is measured by elapsed wallclock time. The reason for this is that the startup

time for an I/O operation is several orders of magnitude greater than the time for transferring an

actual data byte, in state-of-the-art disk systems. The idea behind balancing the I/O operations is

to reduce the number of write operations at the expense of an increased number of read operations,

so that the total number of I/O operations is reduced compared with the state-of-the-art. The index

computation time, which is an expensive operation involving two divisions and a multiplication, is

eliminated by partitioning the memory into two buffers. The expensive in-processor permutation

is replaced by data collection operations. Our algorithm is analyzed using the well-known Linear
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Model and the Parallel Disk Model. The experimental results on a Sun Enterprise and a DEC Alpha

show that our algorithm reduces the execution time by about 50%, compared with the best known

algorithms in the literature.

In addition, a novel data layout is proposed to reduce cache pollution and data cache and Trans-

lation Look-Aside Buffer (TLB) misses in performing the ”standard” matrix multiplication. We

describe the costs of data access in the memory hierarchy and the issues in data layout design.

Then, we describe our efficient data layout for the standard matrix multiplication operation and

compare the performance to three other approaches. Experimental results on UltraSPARC II, Alpha

21264, Cray T3E and Pentium III based machines show improved performance.

The finite element method (FEM) is widely used for analysis and simulation of a large variety

of scientific problems. The first step of a typical FEM is to generate an appropriate mesh for the

problem domain. In grand challenge applications, a typical FEM has 10,000 to 1,000,000 elements.

Such applications require a large amount of memory accesses. In this report, we describe a data

layout for the mesh generation of an FEM using serendipity elements. In our technique rows of a

data matrix are clustered based on their access patterns. This technique can avoid the cache pollution

problem. Then, blocking and block layout are used to further reduce cache misses and TLB misses.

This data layout results in efficient data access and minimizes the memory space allocated for the

corresponding mesh.

The rest of the report is organized as follows. Section 2 gives a description of the model of HPC

platforms developed as part of this research effort. Section 3 describes our novel algorithm for ma-

trix transposition. Section 4 presents our techniques for matrix multiplication. Section 5 discusses

our research on the use of efficient data layouts for FEM applications and Section 6 concludes the

report.
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2 Our Model of HPC Platforms

In this section, we describe previous memory models and present our Integrated Memory Heirarchy

model for HPC patforms.

2.1 Previous Models

The Parallel Memory Hierarchy (PMH) model [3] and the Two-Level Memory Model have been

proposed for HPC platforms. These are briefly described here.

2.1.1 Parallel Memory Hierarchy Model

Disks and
Global Communication Space

Main
Memory

Cache

Reg.

E O

Main
Memory

Cache

Reg.

E O

Main
Memory

Cache

Reg.

E O

Figure 1: PMH model of the IBM SP1. Boxes labeled E (for EVEN) and O (ODD) are functional
units that model the two-stage floating-point pipeline.

In this model, the interprocessor communication cost and the memory hierarchy are considered.

A parallel computer is modeled as a tree of modules. Each non-leaf node represents a memory

module such as disk, main memory, cache, and register. A leaf node represents a computing element

such as a functional unit in a CPU. The PMH model of the IBM SP1 is shown in Figure 1. Each child

connects to its parent by a unique channel. Modules hold data. Data in a module are partitioned

into blocks. A block is the unit of transfer on the channel connecting a module to its parent. The

model has four parameters for each modulem: sm is the number of bytes per block ofm, nm is

the number of blocks inm, cm is the number of children ofm, andtm is the number of cycles to

transfer a block betweenm and its parent.

This model considers the interprocessor communication and the secondary memory access.

However, the model can not represent the hard disk system if the hard disk is distributed among

processor nodes. Examples of the architectures using this model are shown in Figure 2. In Fig-

ure 2, (b) shows a shared disk system. The processors are interconnected by a high-bandwidth

network. Figure 2, (a) shows the distributed disk system where the disks are interconnected by a
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low-bandwidth network. The model inherently assumes that the interprocessor communication is

performed through the disk. Hence, the model can not represent a distributed disk system in which

the processors are interconnected by a high-bandwidth network.

Network

ALU/Registers

Caches

Main
Memories

Disks

ALU/Registers

Caches

Main
Memories

Shared

Network

Disk
System

(b) High-Bandwidth Network (a) Low-Bandwidth Network

Figure 2: PMH model of parallel systems

Another drawback of this model is high complexity. Since every memory module including

cache and registers is modeled using four parameters, the resulting model is too complicated. The

more parameters a model has, the more difficult it is to design and optimize algorithms.

2.1.2 Two-Level Memory Model

This model has been proposed for the development of parallel input/output algorithms. The under-

lying architecture is shown in Figure 3. In this model, the number of input/output operations is used

to estimate the communication cost.

The data transfer time to or from the disk is ignored because the seek time in a disk access

operation is much larger than the data transfer time for small data sizes. However, the data transfer

time is an important factor when the data size is large. The disadvantage of this model is that

the communication time between processors is completely ignored because communication time

between processors is insignificant compared with the disk access time. However, it is an important

factor if the number of communication operations or the amount of data transferred is large.
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Figure 3: HPC architecture used in two-level memory model

2.2 Integrated Memory Hierarchy Model

Our HPC platform model considers three main costs: processor-processor, processor-memory, and

memory-disk costs. The processor-memory and memory-disk costs involve only communication

cost. The processor-processor cost consists of computation and communication costs between pro-

cessor and memory.

2.2.1 Processor-Memory

The results of the Integer READ operation experiment is shown in Figure 5 and Figure 6 to illustrate

our approach to modeling the processor-memory communication cost. The results of this out-of-

cache operation shows the importance of two key parameters: the number of elements (N ) and the

stride (S). In Figure 4, the execution time of reading arrays with various number of elements is

shown. As can be seen in the figure, the total execution time increases linearly as the number of

elements is increased.

In Figure 5 and 6, the stride is varied for each of the arrays (with various number of elements)

shown in Figure 4. As the stride is increased, the total execution time increases linearly for each

array, and peaks out towards the end. The peak point occurs when the stride is large enough that

each access incurs a cache miss. This phenomenon can be clearly seen in Figure 6. In this graph,

the difference in execution time for each consecutive array size from Figure 5 is shown. This graph,

in essence, shows the cost of executing 512 additional elements starting from some base size.

The cost of communication increases linearly as the number of elementsN increases for the

basis stride = 1. This cost,T , can be modeled using the following linear equation

T = Tn �Nn (1)

whereTn is the time for transferring a byte of data between the processor and memory andNn is
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Figure 4: Read Integer using various number of elements

the number of bytes transferred between the processor and memory.

As strideS increases, the total size of the data increases linearly untilS is equal to the cache

line size. Also, this can be modeled using a linear equation

T = Tc �Nc (2)

whereTc is the time to bring a cache line to the cache, andNc is the number of cache lines trans-

ferred to cache.

Table 1: Parameter Values for Processor-Memory Cost

Platform Tn Tc Te
SP 120 nsec 135 nsec 100 nsec

2.2.2 Processor-Processor

Our model of processor-processor communication uses results of permutation communication, since

it can be considered as a general communication pattern. For example, an all-to-all communication

can be implemented using many steps of permutation communication.
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Figure 5: Processor-Memory communication: Read Integer

Figure 7 shows the permutation communication time as a function of message size. In Figure

8, the lower-left corner is enlarged. Figure 7 shows that the communication cost is proportional to

message size. However, when the message size is small (See Figure 8), there is a relatively large

communication startup cost. Based on these observations, the communication time between two

processors can be modeled using a linear function of the message size, m, as follows:

Communication time between a pair of processors= Ts +m�d (3)

whereTs = startup time, and�d = 1=bandwidth = data transfer time per byte per processor. The

Ts and�d are obtained using our permutation communication benchmark experimental results. The

parameters for the SP and the T3E are shown in Table 2.

Table 2: Startup Time and Bandwidth

Platform Startup Time (�sec) Bandwidth (MB/sec/processor)
SP 54 50

T3E 29 100
O2K 85 15

Using equation (3), the time to perform more complex communication patterns can also be
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Figure 6: 512 Difference Graph: Read Integer

modeled. In these cases, we found that the startup time does not a show large variation for different

communication patterns. However, the communication time depends on the total data size and the

number of processors. Thus, when a communication pattern consists ofj steps, the total message

size is
Pj

i=1mi, and the total data transfer time is
Pj

i=1mi��d. Therefore, the total communication

time for a communication pattern is

Tcomm = Startup time+ Total data transfer time

= Ts +
jX

i=1

mi�d

whereTs = startup time,�d = data transfer time per byte, andj = the number of communication

steps in the communication pattern.

With this equation, the communication time for various communication patterns can be esti-

mated as follows:

� Permutation time =Ts +m�d

� Pingpong time =Ts +m�d

� Scatter time =Ts + (P � 1)m�d=2

� Broadcast time =Ts + (logP )m�d=2
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Figure 7: Permutation communication results on the SP

wherem is the size of the message that is transferred to each destination processor, andP is the

total number of processors involved in the communication.

To validate our model, we compared the estimated communication time and the actual com-

munication time for each of our benchmarks. The following data block sizes were used: each

communication is:

� For permutation and pingpong: 16 MB,

� For scatter among 8 processors: 16 MB on the root processor. 2 MB sent to each destination

processor,

� For scatter among 16 processors: 16 MB on the root processor and 1 MB for the destination

processors,

� For broadcast among 8 processors: 2 MB, and

� For broadcast among 16 processors: 1 MB.

In estimating the pingpong communication time, we used the fact that the architectures support

“pipelined communication” discussed later in this report.

The results show that the model can accurately predict the communication time on the SP. On

the T3E, the maximum error was about 30%. The error range can be further reduced by adjusting

the parameters.

2.2.3 Memory-Disk

The read and write operation times are shown in Figure 9, Figure 10, and Figure 11 for the SP, the

T3E, and O2K, respectively. The overall graph shows that the read and write times are proportional

to the message size.
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Figure 8: Permutation communication results on the SP

Table 3: Predicted Time and Actual Time (msec)

Communication operation Actual Predicted Error
Permutation 320 320 0%
Pingpong 350 320 9.4%

Scatter on 8 proc. 160 140 14%
Scatter on 16 proc. 170 150 13%

Broadcast on 8 proc. 63 60 5%
Broadcast on 16 proc. 38 40 5%

The spikes at message size = 1.5 and 3.5 are due to random operating system behavior. We

performed our experiments over many iterations and found that the spikes are random, i.e., there

was no regular pattern nor consistency in the appearance of these spikes. From this, we conclude that

the spikes are not related to any parameter nor characteristic of the underlying hardware platform.

We reason that this is probably due to the operating system behavior and interactions with other jobs

on the system.

The disk operations can be modeled using a linear equation as a function of the data size. How-

ever, the write operation takes more time than the read operation because the write operation needs

to perform a read before the data is written to the disk, if the page containing the data is not in the

memory. Thus, the read and the write operations are modeled using different parameters. Also,

there is a large startup cost in the msec ranges. Even though recent technological advances have

significantly improved the performance of disk, the startup cost is still large compared with data

transfer time per byte. Hence, our model incorporates the startup cost. Therefore, the disk operation

time can be modeled using a linear equation for the read and write operations. However, since the

parameters for read and write operations are different, we use a separate linear equation for each
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Figure 9: Disk operation results on the SP

operation.

Disk operation time = disk read time + disk write time

= (Tr +mr�r) + (Tw +mw�w)

whereTr is startup time for the read operation,mr is the read message size,�r is inverse of the

read bandwidth,Tw is startup time for the write operation,mw is the write message size, and�w
is the inverse of the write bandwidth. The parameters obtained using our benchmark suites are

summarized in Table 4.

Table 4: Memory-Disk Communication Time

Operation Platform Startup Time (msec) Bandwidth (MB/sec)

Write SP 1.0 155
T3E 3.5 149
O2K 2.0 70

Read SP 1.0 255
T3E 1.0 266
O2K 1.5 90

2.2.4 Integrated Memory Hierarchy Model

The complete model is obtained by integrating the models for each communication. An overview

of our model is shown in Figure 12. The complete model can be written as follows:

14



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Data Size (MBytes)

0.0

50.0

100.0

150.0

200.0

250.0

O
pe

ra
tio

n 
T

im
e 

(m
se

c)

Write Time
Read Time

Figure 10: Disk operation results on the T3E

Execution time = processor-memory execution time

+ processor-processor communication time

+ memory-disk communication time

= Tn �Nn + Tc �Nc + Te � S

+Ts +m�d

+Tr +mr�r + Tw +mw�w

whereTn = the data transfer time between the processor and memory per byte,

Nn = the number of data elements that are transferred to cache,

Tc = the time to bring a cache line to the cache,

Nc = the number of cache lines that are transferred to the cache,

Te = a constant to compensate for the difference in the slopes,

S = stride in which data is accessed,

Ts = startup time between processors,

m = size of the message transferred between processors,

�d = 1=bandwidth,

Tr = startup time for the read operation,

mr = the read message size,

�r = inverse of the read bandwidth,

Tw = startup time for the write operation,

mw = the write message size, and

�w = the inverse of the write bandwidth.
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Figure 11: Disk operation results on the O2K
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Figure 12: An overview of the model of HPC platforms

2.3 Significance and Use of Our Model

Our model of HPC platforms is:

� As an integrated model, it consists of three main costs in peforming computation on HPC

platforms: processor-memory, processor-processor, and memory-disk. The computation cost

is included in the processor-memory cost. Thus, in our model, the costs for computation and

communication among various HPC components are considered.

� As a simple model, an HPC platform consists of a number of components, each having a large

number of parameters. To model HPC platforms with very high accuracy, a large number of
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parameters need to be included in the model. Such a model becomes too complex to be

of value to end-users. Therefore, we first identified the three main costs. These costs are

modeled using simple equations providing users a simple view of HPC platforms. Also, we

avoided discontinuous functions to avoid complex calculations. These efforts simplified the

model for users.

� There is a trade-off between accuracy and simplicity. In our model, we sacrificed some

amount of accuracy for simplicity. However, we obtained a model accurate enough for the

design and analysis of algorithms on HPC systems. An example is shown in the next section.

� Our model is useful for design and analysis of algorithms on HPC platforms. Design and

analysis of algorithms require understanding of HPC platforms on which the algorithm is

used. Our model provides a simple and fairly accurate view of the HPC platforms. With the

model, users can predict performance of their code. The users can optimize the code before

the actual run. Also, after a test run, users can easily analyze the execution time using our

model. Thus, the users can save time and effort in designing and analyzing algorithms on

HPC platforms.

3 Matrix Transpose

In this section, we describe the general disk models, previous algorithms of matrix transpose, and

details of our proposed algorithm to perform matrix transpose. Then, we show the performance

improvement achieved by using our algorithm compared with the previous ones.

3.1 Disk Models

State-of-the-art disk systems employ sophisticated hardware and perform several optimizations to

reduce the I/O time. For example, many of these systems employ a disk buffer, a library buffer,

and a controller, and perform access reordering. Each of the above system features needs several

parameters to describe its behavior and such a model will be too complex to be useful.

Two models of disk systems that capture the key characteristics of such systems have been

widely used in the literature. One of them is the Parallel Disk Model (PDM) [25] (see Figure 14).

It models the low level behavior of disk systems using several parameters: block size (B) which is

the size of data that is transferred between disk and memory in one I/O operation, number of disks

(D), memory size (M ), number of processors (P ), and amount of data transferred (m). This model

has been used to study RAID systems. The total time for data transfer between disk and memory

is proportional to the number of blocks transferred and is inversely proportional to the number of

disks on which the data resides. Thus, the cost can be represented asdm=(DB)e � Tb, whereTb is

the time to transfer a block of data between memory and disk.
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1 for s = 0 to lgM=B min(B;N=B) - 1 // for each stage
2 for j = 0 toN2=M � 1 // for each step
3 Read M/B blocks;
4 Perform permutation of data in memory;
5 Write M/B blocks;

Figure 15: Pseudo-code for Aggarwal et al.’s algorithm

In another model [15], two costs are considered: startup time and data transfer time. The startup

time is a fixed time for setting up the data transfer between memory and disk. The rest of the cost

is proportional to the amount of data transferred. Thus, it can be represented asTs +m� , whereTs
is the startup time,m is the data size, and� is the time to transfer unit data. Typically,Ts is in the

msec range, and� is in the tens of nsec/byte range.

3.2 Previous Algorithms

In this section, for the sake of completeness, two well-known algorithms are briefly described.

These two algorithms provide the best performance among many other algorithms. The algorithm

in [1] has been designed using the Parallel Disk Model (PDM) and the algorithm in [15] has been

designed using the Linear Model. In Section 4, our algorithm is compared with these algorithms.

3.2.1 Matrix Transpose

In the matrix transpose problem, an input matrix of sizeN �N initially resides on the disk.N =Qt�1
s=0 rs, wherers is a positive integer. IfN is a prime number, we can add dummy rows to makeN

nonprime. The input matrix is to be transposed and stored in the other array. The available memory

size,M , is assumed to be smaller than the input matrix size. Throughout this paper, to illustrate the

key ideas, we use square matrices. However, the algorithms can be easily extended to rectangular

matrices as well using the technique in [15]. For the sake of simplicity, throughout this paper, we

assume that all the ratios are integers.

3.2.2 Aggarwal’s Algorithm

Aggarwal et al. [1] showed a lower bound on the number of I/O operations to perform matrix

transpose. A pseudo code for the algorithm is shown in Figure 15. In this algorithm, as many

blocks as the size of the available memory are read into memory. Then, the data is permuted and

written onto the disk.

In this algorithm,rs is restricted to be� M=B; 0 � s � t � 1. In our algorithm, we relax

this restriction by developing a technique to use a larger block size. Also, this algorithm does not

consider index computation time. Index computation is needed to perform permutation of the data
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1 for s = 0 to t-1 // for each stage
2 for j = 0 toM=B � 1 // for each step
3 ReadM amount of data;
4 Perform permutation of data in memory;
5 for k = 0 tors � 1
6 WriteM=B amount of data;

Figure 16: Pseudo-code for Kaushik et al.’s algorithm

in memory.

3.2.3 Kaushik’s Algorithm

In this algorithm [15], there aret stages, whereN =
Qt�1

s=0 rs. Each stage consists ofN2=M steps.

In each step,M=N rows are read into memory and a permutation of the data is performed in the

memory. Then, the data is written back to the disk inrs; 0 � s � t� 1, write operations. Thus, the

number of read (write) operations in each step is 1 (rs). A pseudo code for the algorithm is shown

in Figure 16.

Although the number of I/O operations and the time to transfer data between memory and disk

are considered, the total number of read and write operations are not optimized. Also, the index

computation time is not considered.

3.3 An Efficient Algorithm

We present an overview of our approach in Section 3.3.1. The subsequent sections provide all the

details of our approach and analyses using the PDM and LM.

3.3.1 Overview

One of the key features of our algorithm is the reduction in the total number of I/O operations, which

is achieved by means of an efficient data layout scheme on the disk. For example, in [15], there are

three I/O operations (one read operation and two write operations) in each step whenM = 2N and

B = N (see Figure 17). The concept of a step is explained in detail in Section 3.3.2. Our algorithm

requires only a single write operation in each step as against two write operations in the case of the

previous algorithm in [1, 15]. Since our algorithm consists of only the same number of steps as the

previous algorithms, there is a considerable reduction in the total number of write operations.

This reduction in write operations is a consequence of the efficient data layout scheme (Ls; 0 �
s � t � 1) employed. The proposed layout scheme provides a means for reducing the number of

write operations while maintaining the same number of read operations. Thus, the number of I/O
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operations is reduced from three to two in each step which leads to a 33% reduction in the total

number of I/O operations.
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Disk Disk
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(1 Read) (2 Writes)
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Superblock 1
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Read

Disk Disk

Write

Read
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Superblock 1
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Superblock 1

Superblock 1

Superblock 0

Superblock 0

Superblock 1

Superblock 1

Superblock 0

(a) Previous Approach [12]

(b) Our Approach

Figure 17: An illustrative example (rs = 2)

Another technique used in our algorithm is balancing the numbers of read and write operations.

In balancing the numbers of read and write operations, the key idea is that the total number of I/O

operations can be reduced by reducing the number of write operations at the expense of an increased

number of read operations. For example, whenrs = 32, in each step, the number of read (write)

operations in [15] is 1 (32), wherers is explained in Section 3.3.2. In our algorithm, we increase the

number of read operations to 9 in order to reduce the number of write operations to 9. This results in

a 45% reduction in the total number of I/O operations. Note that a straightforward method to balance

the number of read and write operations reduces the total number of I/O operations by only one (see
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Section 3.3.2). The data that is written onto the disk inz write operations in the previous algorithm

is written in one write operation in our algorithm (see Figure 18). Thus, there is a reduction in the

number of write operations by a factor ofz. However, this writing causes the data to be “scattered”:

consecutive superblocks are not contiguous as shown in Figure 18. The superblock is a chunk of

memory of sizeM=rs at stheorem stage,0 � s � t� 1, and is explained in detail in Section 3.3.2.

In a subsequent read operation, to read the data that is scattered,z read operations are needed. By

choosing an optimal value ofz, the total number of I/O operations is reduced.
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Figure 18: An illustrative example (rs = 4 andz = 2)

The index computation takes up a significant portion of the total execution time. In the previous

algorithms [1, 15], the entire available memory is used for reading data from disk. Even though this

approach maximizes the memory utilization, it results in excessive index computation cost. (Index

computation refers to computing the source or destination addresses of each data.)

To eliminate the index computation cost, the available memory is partitioned into two different-

size buffers (read and write buffers). Instead of performing a permutation before every write opera-

tion, only the data needed for each write operation is moved into the write buffer. This is denoted as

a collect operation. The stride of the data access for the collect operation is constant. Thus, it can

be performed using inexpensive do-loops.

If the same schedule as in the previous algorithms is used (collect operations followed by write

operations), then the size of the write buffer should beM=2. However, in our algorithm, the utiliza-

tion of the write buffer is increased using our schedule which results in a smaller write buffer. In
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1 for s = 0 to t-1 // for each stage
2 for step = 0 toN2=M -1 // for each step
3 Read data from disk using the layoutLs�1;
4 Permute the data on memory;
5 Write data to disk using the layoutLs;

Figure 19: Reducing the number of I/O operations

our schedule, a write operation follows each collect operation. Since the read buffer size is less than

the available memory size, the number of I/O operations is increased slightly. However, as shown in

Section 5, the total execution time is reduced significantly due to reduction in the index computation

time.

3.3.2 Details

Additional details of our algorithm as well as the analysis are presented in this section. However,

due to space limitation, proofs of the theorems are not included.

3.3.2.1 Reducing the Number of I/O Operations Our algorithm to reduce the number of I/O

operations is elaborated here (see Figure 19). Note that the matrix size isN �N andN =
Qt�1

s=0 rs.

The algorithm consists oft stages (Line 1). In thestheorem stage,0 � s � t�1, asubmatrix is

defined as follows. Let us denote the data at rowi and columnj in the original input matrix asdi;j .

A submatrix,Sk;l, 0 � k; l � Rs � 1, consists ofdi;j ; kN=Rs � s � (k + 1)N=Rs � 1; lN=Rs �
j � (l + 1)N=Rs � 1, whereRs =

Qs
s=0 rs.

In each stage, there areN2=M steps (Line 2). In each step, the data is first read into memory

(Line 3). The data in the memory that is in the same submatrix is moved to a contiguous chunk

of the memory (Line 4). Let us denote this contiguous chunk of memory as asuperblock. There

arers superblocks of sizeM=rs. The superblocks are written onto the disk (Line 5). The layout,

Ls; 0 � s � t� 1, specifies the locations of the superblocks on the disk.

The layout, the schedule of reading data from the disk, and the schedule of writing data onto

the disk are explained in the following four cases. Case 1 and Case 2 pertain to the cases where as

much data as the memory size can be read from the disk or written onto the disk in one I/O operation

(B = M ). Our analysis shows that efficient data arrangement reduces the number of I/O operations

by a factor of(rs + 1)=rs (Case 1). In addition to this, ifrs � 8 (Case 2), balancing the number of

I/O operations further reduces the total number of I/O operations.

If M=rs < B < M (Case 3), our algorithm provides the best performance compared with the

previous algorithms. In the other case,B �M=rs (Case 4), our algorithm has the same performance

as the previous algorithm in [1] with respect to the number of I/O operations.

Note that reducing the index computation time (discussed in Section 3.3.2.6) further improves
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the performance in all the cases.

3.3.2.2 Case 1: (B = M and 1 < rs < 8) The key idea here is data arrangement on the disk,

Ls. The matrix is first partitioned intoRs�1 areas. Each area includesN=Rs�1 rows. The layout

and schedules of reading and writing data in each area are explained for two cases.

If rs = 2, the layout,Ls is as follows: the first superblock is stored in thejtheorem; b(j +

1)=2c mod 2 = 0, superblock and the second superblock is stored in the rest of the superblocks

(see Figure 20). The number in each small square denotes a data element. Notice that the data is in

row-major order in the initial matrix at stage 0 and in column-major order in the last matrix in stage

2. Using this layout, in the first step, the first and second superblocks are stored on the disk in one

write operation since they are contiguous in the memory as well as on the disk. This is illustrated in

Figure 20. In the figure, at each stage, the left (right) matrix is initial (final) matrix. In the second

step, the third and fourth superblocks are saved on disk, and so on. In the next stage, the data in

the second and third superblocks are read into the memory using one read operation, and data in the

fourth and fifth superblocks are read into the memory in the next step.

If rs > 2, in thesttheorem step, two superblocks,(st + 1) mod rs and(st + 2) mod rs, are

stored in one write operation and the rest of the data is written in(rs � 2) write operations which

results inrs�1 write operations (see Figure 21). The figures in the middle show the data in memory

after permutation.

A comparison of the numbers of I/O operations in the algorithm in [15] and our algorithm is

shown in Table 5.

Table 5: Number of I/O operations in each step

rs 2 3 4

Kaushik’s Algorithm [15] 3 4 5

This Paper 2 3 4

Reduction 33% 25% 20 %

3.3.2.3 Case 2: (B = M and rs � 8) In this case, the total number of I/O operations can be

further reduced by balancing the numbers of read and write operations in addition to the data layout

and the schedule explained in Case 1. In Kaushik et al.’s algorithm, the difference between the

numbers of read and write operations is large. That is, in each step, the number of read operations

is 1 and the number of write operations isrs. In our algorithm, we develop a technique that reduces

the number of write operations at the expense of an increased number of read operations.

Note that if a straightforward method is used, the number of write operations is reduced tors�z,
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wherez is the number of the new read operations. Then, the new total number of I/O operations is

(rs � z) + z = rs. The total number of I/O operations is reduced by only one. In our algorithm,

we decrease the number of write operations to approximatelyrs=z. Then, the total number of I/O

operations can be reduced by choosing an optimal value ofz.

In the previous algorithms, each superblock is stored in one disk write operation. In our algo-

rithm, z blocks are stored on the disk in one write operation. Thus, the number of write operations

is reduced by a factor ofz. In each read operation, to read data that is “scattered” in noncontiguous

locations, we need to performz read operations. It can be shown that the optimal value ofz is
p
2rs

in thestheorem stage,0 � s � t� 1.

The total number of I/O operations in the algorithm in [15] and in our algorithm are compared

in Table 6. The algorithm in [1] is not compared here since it cannot be used in this case. The

following Theorem 1 applies to Case 1 and Case 2.

Theorem 1 In the Linear Model, the total number of I/O operations in our algorithm is
N2

M

Pt�1
s=0min(rs;

p
2rs + 1).

3.3.2.4 Case 3: (M=rs � B < M ) This is similar to Case 2; the only difference is the size

of the block. It relaxes the restriction (rs � M=B) that was imposed in [1]. In our algorithm, we

can increase the value ofrs to be larger thanM=B so that the number of stages is decreased. The

optimal value ofz isBrs=M .

Theorem 2 In the Parallel Disk Model, the total number of I/O operations in our algorithm is
2N2

M

Pt�1
s=0(
q

rsM
B + 1), whereM

rs
< B < M , 0 � s � t� 1.

3.3.2.5 Case 4: (B �M=rs) In this case, our algorithm is the same as in [1].

3.3.2.6 Reducing Index Computation Time In the previous algorithms, the available memory

is fully utilized to reduce the number of I/O operations. In other words, in a read operation, as much

Table 6: Number of I/O operations in each step

rs = 32 rs = 128
rs

Kaushik’s Algorithm Our Algorithm Kaushik’s Algorithm Our Algorithm

# of Read operations 1 9 1 17

# of Write operations 32 9 128 17

Total 33 18 129 34
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data as the size of the memory is read from disk. However, this results in a large index computation

time. Permuting the data within the memory requires destination location of each data element to

be computed.

To reduce the total execution time, we eliminate the expensive index computation by using the

algorithm shown in Figure 22. In our algorithm, we partition the memory into two different-size

buffers: one with sizeMr (Read buffer) and the other with sizeMw (Write buffer). The read buffer

is used for reading data from disk. After reading the data, there arers=z sets of collect and write

operations, wherez is a positive integer and explained in Section 3.3.2.6. In each collect operation,

data inz supermatrices is collected in the write buffer. The sizes of the write and read buffers are

determined asMz=(rs + z) andMRs=(rs + z), respectively.

In the collect operation, the data in thez superblocks is located inMrRs�1=N chunks of data.

The amount of the data in each chunk isN=Rs�1. Thus, to collect the data inz superblocks,

multiple-level do-loops are necessary. In each do-loop, the required computations are simple ad-

ditions to compute loop-variables. Note that, in the previous algorithms [1, 15], the required com-

putations for permutation of the data consist of both the index computations and the loop-variable

computations. In our algorithm, since the loop-variables are used to collect data to the write buffer,

the index computation is eliminated.

The collected data in the write buffer is written onto the disk in a write operation (Line 6). Even

though the number of I/O operations increases by a factor ofM=Mr, the total execution time is

reduced significantly due to the elimination of index computation time.

3.4 Experimental Results

We implemented the algorithms on a DEC Alpha system (Cray T3E) at the San Diego Supercomput-

ing Center (SDSC) and a Sun Enterprise 4000 system at the University of Southern California. For

comparison purposes, Kaushik et al.’s algorithm described in Section 3.2.3 was also implemented.

Note that Aggarwal et al.’s algorithm described in 3.2.2 has the same total execution time as the

Kaushik et al.’s algorithm in our experiments. Even though the two algorithms perform permutation

using different methods and the data being permuted are different, the permutation times are the

same. If the block size is smaller thanM=rs at thestheorem stage,0 � s � t � 1, then both the

algorithms require the same I/O time, wheret is the number of stages. I/O time is different for the

two algorithms when the amount of data transferred in one I/O operation is smaller thanB. The

amount of the data transferred in one I/O operation in our experiments ranges from 128 KBytes to

2 MBytes and the typical size ofB in state-of-the-art platforms is 4 KBytes. Thus, the performance

of the two algorithms are the same in our experiments. Therefore, the execution time reported under

the heading “previous algorithm” refers to both the algorithms.

The system parameters of the computing platforms in which our experiments were conducted

are summarized in Table 7.

The amount of main memory allocated to the data was varied from 16 MBytes to 64 MBytes and
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Table 7: Computing Platforms on which experiments were conducted

Platform Cray T3E Sun Enterprise

Processor DEC Alpha (300 MHz) UltraSPARC (336 MHz)

OS UNICOS/mk 2.0.3.39 SunOS Release 5.6 Version Generic105181-11

Compiler Cray Standard C Version 6.1.0.1 SC4.0

the data size was varied from 512 MBytes to 2 GBytes. For each parameter value, the algorithms

were executed 5 times and the maximum, average, and minimum values were calculated. The

speedup of our algorithm over the previous algorithms was calculated for each parameter setting.

The results of our experiments are shown in the figures from Figure 23 to Figure 28. The results

show that our algorithm reduces the execution time by about 50%.

The execution times correlate well with our analysis. From our experiment in implementing

the previous matrix transpose algorithm on the Sun Enterprise, the time for I/O is 10 nsec/byte, the

time for index computation is 25 nsec/byte, and the time for data movement is 20 nsec/byte. In this

case, the time for I/O is measured as the elapsed wallclock time, which is the most tangible method

of measuring I/O performance. The time for I/O is obtained by dividing the total elapsed time by

the data size. The time for index computation involves the computation of either the source or the

destination address. The destination addressy of a data located inx is based on the equation is

y = x
a + xmodb, wherea andb are variables calculated based on the step and stage. Thus, a single

index computation involves two divisions and a multiplication, rendering it an expensive operation.

For example, on the DEC Alpha 21264, an integer multiplication takes 13 cycles and integer divide

is not directly supported. Thus, when the data size is 2 GBytes, the expected total execution time

is 2 G� 3 stages� 2 (read and write)� (10+25+20) nsec = 660 sec which is similar to the actual

642 sec. For the size of 512 (128) MBytes, the expected time is 165 (41) sec and actual time is 148

(37) sec.

The execution time is increased about four times as the data size is increased four times. This

is reasonable since the three major costs (I/O time, index computation time, and memory-memory

transfer time) are proportional to the data size. Thus, we expect the same speedup for the larger data

sizes than 2 GBytes.

3.5 Further Extensions

Our matrix transpose algorithm can be extended to the more general problem of Bit Matrix Mul-

tiply Complement (BMMC) [7]. In this problem, we consider a matrixX of sizeN � N . The

permutation of the data is represented using a nonsingular matrixA of size 2 logN � 2 logN

and a vectorc, where each of the entries ofA and c is a binary number. The address of an el-
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ement is represented in bit notation. A target address isy = (y0; y1; :::; y2 logN�1), and source

address isx = (x0; x1; :::; x2 logN�1), where the firstlgN bits represent the row number and next

lgN bits represent the column number. The target address is obtained from the source address by

yi = (
2 logN�1L

j=0
ai:jxj)� ci; 0 � i � 2 logN � 1, where the� denotes an exclusive-or operation. A

specific case of BMMC is a matrix transpose.

The BMMC consists of many steps. In each step, there are three basic operations as in the case

of matrix transpose: read data from disk, permutation of the data on memory, and write data onto

disk. Since the key ideas in our matrix transpose algorithm (reducing the number of I/O operations

and index computation) are independent of the permutation method of the data in memory, our

algorithm will greatly enhance the computational efficiency of the BMMC problem.

To reduce the number of I/O operations, the algorithm in Figure 19 is used to employ the two

techniques: efficient data layout scheme and balancing the number of I/O operations. The permu-

tation of the data in memory is performed as in [7]. To reduce the index computation time, the

algorithm in Figure 22 is used: the available memory is partitioned into two buffers, the permuta-

tion is replaced by collect operations, and the collect operations and write operations are scheduled

to maximize the memory utilization.
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Figure 20: An illustrative example (N = 8 =
2Q

s=0
2, andM = 16)
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Figure 21: An illustrative example (N = 9 =
1Q

s=0
3, andM = 27)

1 for s = 0 to t - 1 // for each stage
2 for step = 0 toN2=Mr - 1 // for each step
3 Read data from disk;
4 for i = 0 tors=z - 1
5 Move data that has theitheorem supermatrix to the write buffer;
6 Write data in write buffer to disk;

Figure 22: Pseudo-code for our algorithm
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Figure 23: Experimental Results on DEC Alpha (T3E) (a) Minimum (b) Average (c) Maximum (d)
Speedup,M = 16 MBytes
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Figure 24: Experimental Results on DEC Alpha (T3E) (a) Minimum (b) Average (c) Maximum (d)
Speedup,M = 32 MBytes
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Figure 25: Experimental Results on DEC Alpha (T3E) (a) Minimum (b) Average (d) Speedup,M
= 64 MBytes

33



128 512 2048
Data Size (MBytes)

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

900.0

1000.0

1100.0

1200.0

E
xe

cu
tio

n 
T

im
e 

(S
ec

)

Previous Algorithm

Our Algorithm

128 512 2048
Data Size (MBytes)

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

900.0

1000.0

1100.0

1200.0

E
xe

cu
tio

n 
T

im
e 

(S
ec

)

Previous Algorithm

Our Algorithm

(a) (b)

128 512 2048
Data Size (MBytes)

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

900.0

1000.0

1100.0

1200.0

E
xe

cu
tio

n 
T

im
e 

(S
ec

)

Previous Algorithm

Our Algorithm

128 512 2048
Data Size (MBytes)

1.00

1.20

1.40

1.60

1.80

2.00

2.20

S
pe

ed
 U

p

Maximum
Average
Minimum

(c) (d)

Figure 26: Experimental Results on Sun Enterprise (a) Minimum (b) Average (c) Maximum (d)
Speedup,M = 16 MBytes
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Figure 27: Experimental Results on Sun Enterprise (a) Minimum (b) Average (c) Maximum (d)
Speedup,M = 32 MBytes
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Figure 28: Experimental Results on Sun Enterprise (a) Minimum (b) Average (c) Maximum (d)
Speedup,M = 64 MBytes
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4 Matrix Multiplicaton

In this section, we describe cache conscious data layouts for efficient matrix multiplication. We pro-

pose a novel data layout for efficient matrix multiplication. For standard matrix multiplication, we

show how to reduce cache pollution, data cache misses and TLB (Translation Look-Aside Buffer)

misses. We start with a description of data access costs in the memory hierarchy and issues in data

layout design. In Section 4.3 we present an efficient data layout for the standard matrix multiplica-

tion operation. As seen from the experimental results obtained from three machines, our approach

compares favorably with the three others that we considered.

4.1 Data Access in the Memory Hierarchy

In general computer systems, each processor node communicates with its cache memory (fast mem-

ory), which in turn communicates with the local main memory. The processor may also access the

main memories of other processors (remote memories). If the data requested by the processor is not

available in cache, a cache miss occurs. During a cache miss, data is fetched from the main memory

into the cache. Typically, the main memory access is about 10 times slower than cache memory.

For instance, on a DEC Alpha 21154 platform, the on-chip cache access latency is around 10 nsec,

while the main memory access latency is 253 nsec. For better performance, the frequency of cache

misses should be kept low.

To reduce memory latency, the processor attempts to fetch data from the cache memories. Phys-

ical memory is organized into equal sized pages (say 4k bytes). All addresses within a physical

memory page lie in consecutive memory locations. The virtual memory is also organized into pages

of the same size. Each virtual page is assigned a page number. When main memory is out of space,

one page is brought from the disk at a time. Before the processor can execute a memory access in-

struction, the virtual address has to be translated. Translation determines the physical page number

corresponding to a given virtual page number. This mapping information is provided by the page

tables which are the data structures stored in the main memory.

It is very expensive to look up the page tables for each address. To reduce the cost of translation,

a special high-speed cache is provided to buffer the page table entries. This cache is called the

Translation Lookaside Buffer (TLB). In Figure 29, the CPU looks up the TLB for each address

translation. Usually, the TLB size is limited to only a few entries. In case the TLB misses, the

missing translation entry is loaded into it from the page table. A TLB miss significantly increases

the translation time.

4.2 Issues in Design of Data Layout

A data layout is the scheme in which data elements are assigned addresses in the memory. In a row

major layout (See Figure 30), elements in one row are assigned consecutive memory locations. In a

column major layout elements in one column are assigned consecutive memory locations.

37



CPU
TLB Page Table

Figure 29: Using TLB for fast page number translation

Matrix

i

j

The data elementA(i,j)  is mapped to the memory location4*i+j

A[4][4]

The data elementA(i,j)  is mapped to the memory location4*j+i

(a) A Row Major Data layout

(b) A Column Major Data layout

Figure 30: Example data layouts

Mismatch between data access patterns and data layout patterns can increase the occcurance of

cache misses. Consider the example shown in Figure 31, where a cache with one 4 word sized block

has data laid out in row major order. A row major access pattern causes only 4 cache misses since

each cache miss loads the entire row into a block. In case of column major access, the number of

cache misses goes up to 16. This happens because each cache miss loads one useful element and

three unused elements.

4.3 Data Layout for Standard Matrix Multiplcation

Large scale matrix multiplication deals with matrices which do not fit into the cache. Conventional

methods of matrix multiplication are not cache-friendly. In the matrix multiplicationC = A � B,

elements in MatrixB are accessed in column major order. Assuming that bothA andB are stored in
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Row major access Column major access

Only 4 cache misses 16 cache misses

Figure 31: Access of page numbers using translation look-aside buffer

row major order, each access toB results in a cache miss since the consecutively accessed elements

are located far apart in memory. Elements ofB are repeatedly accessed when computing different

elements ofC, but they do not remain in the cache for reuse as the cache capacity is small. Besides,

only small portions of the fetched cache blocks are accessed before they get replaced due to conflicts.

The net result is a large number of cache misses.

Blocking is widely used to reorder the computation sequence, and thereby, reduce cache pollu-

tion. Blocking exploits temporal locality to reduce cache misses. However, cache conflict misses

still exist in blocking based computation. TLB thrashing is another possible problem for large ma-

trices. Elements of the same block can span several different pages when a column is accessed. This

may cause a spate of misses in the small-sized TLB. Therefore, blocking does not offer a complete

solution for cache-optimized matrix multiplication.

One of the key ideas of our approach is to reorganize the layout of matrix data stored in the

main memory such that it is cache friendly. We perform this reorganization prior to computation. In

the proposed data layout, we transpose matrix B such that the data layout matches the data access

pattern. This reduces cache pollution to a considerable extent. We partition each matrix into square

sub-matrices, denoted as blocks. Elements belonging to the same block are stored in consecutive

memory locations in row major order. The resulting data layout is shown in Figure 32 (b). There

are no conflict misses among the elements in the same block. The block size is chosen to be equal

to the virtual page size so that computations within a block will not result in a TLB miss.

We have shown using the SimpleScalar simulator (a state-of- the-art architecture simulator)

that the total number of TLB misses is reduced significantly with our layout compared with the

standard row major layout. The above data layout transformation (i.e., matrix transpose and block

data layout) is performed once. Thus, no additional overhead is incurred during the computation.
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Our proposed layout reduces cache pollution, cache misses, and TLB misses without excessive

overheads like reorganizing the data in memory or computing indices.

We have implemented our scheme on UltraSPARC II, Alpha 21264, and Pentium III based

machines for matrix sizes ranging from 1024x1024 to 1536x1536. Tables 8, 9, and 10 compare the

performance of our scheme with the naive CBLAS (without blocking), CBLAS (with blocking),

and CBLAS (with blocking and copying) algorithms on three machines. The reported execution

times are wall clock times. On UltraSPARC II, Alpha 21264, and Pentium III machines, we used

the gcc compiler wit ”-O3” optimization option. As the experimental results show, our scheme is

up to 15 times faster than naive CBLAS, 2 times faster than blocking based CBLAS, and is superior

to blocking and copying based CBLAS implementations on UltraSPARC II. On Alpha 21264, our

scheme performs up to 5 times faster than the naive CBLAS, up to 3 times faster than blocking

based CBLAS, and is faster than blocking and copying based CBLAS implementation. On Pentium

III, our scheme outperforms all the three previous techniques.

Table 8: Execution time on UltraSPARC II (400 MHz, 2MByte L2 cache)

Matrix size CBLAS (Native) CBLAS (Blocking) CBLAS (Blocking +copying) Our Algorithm

1024� 1024 243.418 34.147 22.271 17.240

1200� 1200 370.387 40.663 34.478 29.920

1280� 1280 455.795 65.952 42.262 33.842

1400� 1400 592.934 66.675 53.522 45.192

1536� 1536 810.280 124.489 74.740 60.865
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Table 9: Execution time on DEC Alpha 21264 (500MHz, 4MByte L2 cache)

Matrix size CBLAS (Native) CBLAS (Blocking) CBLAS (Blocking +copying) Our Algorithm

1024� 1024 125.237 23.214 16.427 13.283243.418

1200� 1200 194.556 28.330 28.465 22.383370.387

1280� 1280 238.613 31.115 29.984 26.503455.795

1400� 1400 310.947 44.730 45.311 35.248

1536� 1536 415.870 79.907 54.045 45.816

Table 10: Execution time on Pentium III (450MHz, 512KByte L2 cache)

Matrix size CBLAS (Native) CBLAS (Blocking) CBLAS (Blocking +copying) Our Algorithm

1024� 1024 92.566 27.136 22.030 17.335

1200� 1200 152.311 30.107 33.390 28.050

1280� 1280 184.973 52.325 43.117 34.184

1400� 1400 244.652 48.215 55.644 45.756

1536� 1536 325.241 90.306 74.345 59.137
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Figure 32: Illustration of our proposed block data layout for matrix multiplication
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5 Finite Element Method

In this section, we present an efficient data layout for mesh generation of generic two-dimensional

Finite Element Methods (FEMs). FEMs are widely used for numerical analysis and simulation of

a large variety of scientific problems. The first step of a typical FEM is to generate an appropriate

mesh of the problem domain. FEMs for grand challenge applications can have 10,000 to 1,000,000

elements. Often very large numbers of memory accesses are required. We describe a data layout

of the mesh generated for an FEM using serendipity elements. This layout results in efficient data

access and minimizes the memory space allocated for the corresponding mesh.

5.1 Mesh Generation in Two-Dimensional FEMs

In finite element methods, the problem domain is first discretized into a collection of pre-selected

finite elements. Based on discretization, a finite-element mesh of pre-selected elements is generated.

The mesh generation method has a strong influence on the quality of the numerical results. In

two-dimensional FEMs, the problem domain is usually discretized into triangular or rectangular

elements. Some examples are shown in Figure 33.

Different types of elements have different number of pre-selected nodes. After discretization,

the geometric properties (e.g., coordinates, cross-section areas, etc.) of each node are generated.

Based on these properties, element equations are derived either directly or iteratively. For applica-

tions using the iterative approach, the mesh may need to be regenerated for each iteration based on

changes in geometric properties.

5.2 Efficient Data Layout for the FEMs using Serendipity Elements

In mesh generation of two-dimensional FEMs, internal nodes of the higher-order triangular or rect-

angular elements can be condensed out at the element level. Condensation is justified as these

nodes do not contribute to the inter-element connectivity. Figure 33 (a) shows a mesh with triangu-

lar elements, each having 12 boundary nodes and 3 internal nodes. Another mesh with rectangular

elements is shown in Figure 33 (b). Here each element has 8 boundary nodes and 1 internal node.

We can use the so-called serendipity elements to avoid internal nodes. Serendipity elements are

those triangular or rectangular elements which have no interior nodes [26]. Techniques to condense

out internal nodes can reduce the size of the element matrices, which in turn are derived from nodal

properties. A mesh with serendipity elements can be realized by storing the geometric properties

of all nodes in row-major order. However, this straight-forward approach has its problems. First,

it wastes memory space. For instance, the FEM shown on Figure 33 (b) uses 8-node rectangular

elements, and about1
4

of the nodes are not accessed. Second, this approach causes cache pollution

when the even rows of the node matrix are accessed, since only half of the nodes are required.

In our work, we have focussed on developing a data layout that addresses the above problems

effectively. The goals are to minimize the memory requirements, avoid cache conflict misses, and
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(a) 12-node triangular elements

(b) 8-node rectangular elements

Figure 33: Illustration of two FEM meshes using serendipity elements and their node numbering
schemes

prevent cache pollution. We suggest an approach in which rows are stored with the same access

pattern as a sub-matrix. Various sub-matrices require different indexing schemes based on their

corresponding access patterns. Using the technique of separating rows with different access patterns,

only the required nodes of each row are stored. In Figure 33 (b), the FEM requires all nodes in the

odd rows, and only every other node in the even rows. We stripe the original node matrix row-wise,

and alternately store the rows to Matrices A and B respectively (See Figure 34). As depicted in

Figure 35, we condense matrixB so that only the nodes to be accessed are stored. Thus, memory

requirements are minimized.

Note that both the sub-matrices are needed to access nodes of a single element. In Figure 33

(b), MatrixA is used to access nodes 1, 3, 4, 5, 7, and 8, while MatrixB is used to access nodes 2

and 6. Similarly, the FEM in Figure 33 (a) requires all the nodes in rows 1, 5, 9, ...,4k + 1 (k is a

non-negative integer). However, it only requires nodes 1,2,5,6,... in rows 2, 6, 10,...,4k + 2. Our

approach is to alternately store the rows in four sub-matrices.

Table 11 summarizes the sizes and the access patterns of these sub-matrices. We assume an
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n � m node matrix, wheren;m are both an integer multiple of 4. In addition to this scheme of

separate sub-matrices, we also apply the block data layout. As explained in Section 4, usage of

block data layout can further reduce cache conflict misses.

N

M

M

(N+1) / 2

(N-1) / 2

M

Matrix A

Matrix B

Figure 34: Separation of the odd rows and even rows of a mesh with 12-node rectangular elements

(N-1) / 2

M

Matrix B

(M+1)/2

(N-1) / 2

Condensed Matrix B

Figure 35: Matrix B is condensed to reduce the overall memory requirement

Using our proposed data layout, both of the sub-matrices are needed to access the nodes of a

single element. For instance, in Figure 33 (b), Matrix A is used to access nodes 1, 3, 4, 5, 7, and 8,

while Matrix B is used to access nodes 2 and 6.

Similarly, in the other example shown in Figure 33 (a), the FEM requires all of the nodes in

rows 1, 5, 9, ...,4 � k + 1 (k is a non-negative integer). However, it only requires nodes 1,2,5,6,...

in rows 2, 6, 10,...,4 � k + 2. Using our proposed approach, we alternately store the rows to four

sub-matrices. Table 11 summarizes the sizes and the access patterns of these sub-matrices. Note

that we assume ann � m node matrix, wheren, m are both an integer multiple of 4. Also, we

assume thatk is a non-negative integer number.

In addition to the proposed technique to separate the node matrix into sub-matrices, we further

apply the block data layout as described in the previous section. The use of block data layout can

further reduce the cache conflict misses as explained in Section 4.
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5.3 Experimental Results

We have implemented an FEM benchmark using the 8-node rectagular model to examine the effi-

ciency of memory access on an Ultra-SPARC II machine. The matrix in our experiment contains

512 nodes. Table 12 compares the performance of three approaches: a straightforward (without

blocking) approach, an approach with blocking, and a scheme that combines separate sub-matrices,

blocking, and block data layout. The reported execution times are wall clock times. On UltraSPARC

II, we used the gcc compiler with the ”-O3” optimization option. For implementing our proposed

scheme, we used block layouts and in-line functions to access each array element. The block size

was chosen to be 32 in order to avoid TLB misses.

It is evident from the experimental results in Table 12 that inspite of greater complexity in

index computation, our scheme is about 2.2 times faster than the straightforward approach and

approximately 1.7 times faster than the blocking based approach.

Table 11: Sub-matrices used for the 12-node triangular FEM

Sub-matrix Name Sub-matrix Content matrix size access pattern

A Rows4� k + 1 (n
4
)m all nodes

B Rows4� k + 2 (n
4
)(m

2
) 1,2,5,6...

C Rows4� k + 3 (n
4
)(m

2
) 1,3,5,7...

D Rows4� k + 4 (n
4
)(m

2
) 1,4,5,8...
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Table 12: Memory Access time on UltraSPARC II (400 MHz, 2MByte L2 cache)

FEM Memory Access BenchmarkMemory Access Time (milli-seconds) Techniques applied

Straightforward Approach 95.313 None

Blocking-Based Approach 74.190 Blocking

Our Proposed Approach 43.718 Separate Sub-matrices

Blocking + Block Layout
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6 Conclusion

In this report, we have shown techniques for data placement to support efficient memory access for

large scale scientific applications.

For large-scale matrix transposition (out-of-core matrix transpose), our algorithm reduced both

the number of I/O operations and the index computation time. Our results show that our algorithm

reduces the execution time by up to 50%.

For large-scale standard matrix multiplication, our proposed approach using the block data lay-

out has shown significant performance improvement. Our approach reduces cache pollution, con-

flict cache misses, and TLB misses. Our scheme is up to 15 times faster than naive CBLAS, 2 times

faster than blocking based CBLAS, and is 22% faster compared to blocking and copying based

CBLAS implementation on UltraSPARC II.

For mesh generation of Finite Element Methods (FEMs), our approach avoids cache pollution.

Using blocking and block layout, we achieved further reductions in cache misses and TLB misses.

Experimental results indicate speedup by a factor of 2.2 over normal layout and 1.7 over blocking

with normal layout.

Our results encourage the use of data placement/data layout techniques to improve the memory

access for data-intensive applications. We believe that data layout designs can be further employed

in other ERDC applications with complex data access patterns.
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